Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38588471

RESUMO

Neurological conditions conquer the world; they are the leading cause of disability and the second leading cause of death worldwide, and they appear all around the world in every age group, gender, nationality, and socioeconomic class. Despite the growing evidence of an immense impact of perturbations in neuroenergetics on overall brain function, only little is known about the underlying mechanisms. Especially human insights are sparse, owing to a shortage of physiologically relevant model systems. With this perspective, we aim to explore the key steps and considerations involved in developing an advanced human in vitro model for studying neuroenergetics. We discuss biological and technological strategies to meet the requirements of a predictive model, aiming at providing a guide and inspiration for future in vitro models of neuroenergetics.

2.
Cell Mol Life Sci ; 80(11): 314, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798474

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is considered as the hepatic manifestation of metabolic syndrome, which is characterised by obesity, insulin resistance, hypercholesterolemia and hypertension. NAFLD is the most frequent liver disease worldwide and more than 10% of NAFLD patients progress to the inflammatory and fibrotic stage of non-alcoholic steatohepatitis (NASH), which can lead to end-stage liver disease including hepatocellular carcinoma (HCC), the most frequent primary malignant liver tumor. Liver sinusoidal endothelial cells (LSEC) are strategically positioned at the interface between blood and hepatic parenchyma. LSECs are highly specialized cells, characterised by the presence of transcellular pores, called fenestrae, and exhibit anti-inflammatory and anti-fibrotic characteristics under physiological conditions. However, during NAFLD development they undergo capillarisation and acquire a phenotype similar to vascular endothelial cells, actively promoting all pathophysiological aspects of NAFLD, including steatosis, inflammation, and fibrosis. LSEC dysfunction is critical for the progression to NASH and HCC while restoring LSEC homeostasis appears to be a promising approach to prevent NAFLD progression and its complications and even reverse tissue damage. In this review we present current information on the role of LSEC throughout the progressive phases of NAFLD, summarising in vitro and in vivo experimental evidence and data from human studies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Carcinoma Hepatocelular/genética , Células Endoteliais/metabolismo , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Fibrose
3.
Stem Cell Rev Rep ; 18(7): 2494-2512, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35488987

RESUMO

The generation of astrocytes from human induced pluripotent stem cells has been hampered by either prolonged differentiation-spanning over two months-or by shorter protocols that generate immature astrocytes, devoid of salient mature astrocytic traits pivotal for central nervous system (CNS) modeling. We directed stable hiPSC-derived neuroepithelial stem cells to human iPSC-derived Astrocytes (hiAstrocytes) with a high percentage of star-shaped cells by orchestrating an astrocytic-tuned culturing environment in 28 days. We employed RT-qPCR and ICC to validate the astrocytic commitment of the neuroepithelial stem cells. To evaluate the inflammatory phenotype, we challenged the hiAstrocytes with the pro-inflammatory cytokine IL-1ß (interleukin 1 beta) and quantitatively assessed the secretion profile of astrocyte-associated cytokines and the expression of intercellular adhesion molecule 1 (ICAM-1). Finally, we quantitatively assessed the capacity of hiAstrocytes to synthesize and export the antioxidant glutathione. In under 28 days, the generated cells express canonical and mature astrocytic markers, denoted by the expression of GFAP, AQP4 and ALDH1L1. In addition, the notion of a mature phenotype is reinforced by the expression of both astrocytic glutamate transporters EAAT1 and EAAT2. Thus, hiAstrocytes have a mature phenotype that encompasses traits critical in CNS modeling, including glutathione synthesis and secretion, upregulation of ICAM-1 and a cytokine secretion profile on a par with human fetal astrocytes. This protocol generates a multifaceted astrocytic model suitable for in vitro CNS disease modeling and personalized medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Antioxidantes/metabolismo , Astrócitos , Células Cultivadas , Sistema Nervoso Central , Citocinas/metabolismo , Glutamatos/metabolismo , Glutationa/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-1beta/metabolismo , Fenótipo
4.
Fluids Barriers CNS ; 19(1): 22, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35300705

RESUMO

BACKGROUND: Neurodegenerative diseases (NDs) are an accelerating global health problem. Nevertheless, the stronghold of the brain- the blood-brain barrier (BBB) prevents drug penetrance and dwindles effective treatments. Therefore, it is crucial to identify Trojan horse-like drug carriers that can effectively cross the blood-brain barrier and reach the brain tissue. We have previously developed polyunsaturated fatty acids (PUFA)-based nanostructured lipid carriers (NLC), namely DHAH-NLC. These carriers are modulated with BBB-permeating compounds such as chitosan (CS) and trans-activating transcriptional activator (TAT) from HIV-1 that can entrap neurotrophic factors (NTF) serving as nanocarriers for NDs treatment. Moreover, microglia are suggested as a key causative factor of the undergoing neuroinflammation of NDs. In this work, we used in vitro models to investigate whether DHAH-NLCs can enter the brain via the BBB and investigate the therapeutic effect of NTF-containing DHAH-NLC and DHAH-NLC itself on lipopolysaccharide-challenged microglia. METHODS: We employed human induced pluripotent stem cell-derived brain microvascular endothelial cells (BMECs) to capitalize on the in vivo-like TEER of this BBB model and quantitatively assessed the permeability of DHAH-NLCs. We also used the HMC3 microglia cell line to assess the therapeutic effect of NTF-containing DHAH-NLC upon LPS challenge. RESULTS: TAT-functionalized DHAH-NLCs successfully crossed the in vitro BBB model, which exhibited high transendothelial electrical resistance (TEER) values (≈3000 Ω*cm2). Specifically, the TAT-functionalized DHAH-NLCs showed a permeability of up to 0.4% of the dose. Furthermore, using human microglia (HMC3), we demonstrate that DHAH-NLCs successfully counteracted the inflammatory response in our cultures after LPS challenge. Moreover, the encapsulation of glial cell-derived neurotrophic factor (GNDF)-containing DHAH-NLCs (DHAH-NLC-GNDF) activated the Nrf2/HO-1 pathway, suggesting the triggering of the endogenous anti-oxidative system present in microglia. CONCLUSIONS: Overall, this work shows that the TAT-functionalized DHAH-NLCs can cross the BBB, modulate immune responses, and serve as cargo carriers for growth factors; thus, constituting an attractive and promising novel drug delivery approach for the transport of therapeutics through the BBB into the brain.


Assuntos
Barreira Hematoencefálica , Nanopartículas , Fatores de Crescimento Neural , Doenças Neurodegenerativas , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Barreira Hematoencefálica/metabolismo , Ácidos Docosa-Hexaenoicos/química , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lipossomos , Microglia/metabolismo , Fatores de Crescimento Neural/administração & dosagem , Doenças Neurodegenerativas/tratamento farmacológico , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química
5.
Small ; 17(32): e2101785, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34174140

RESUMO

Microphysiological systems mimic the in vivo cellular ensemble and microenvironment with the goal of providing more human-like models for biopharmaceutical research. In this study, the first such model of the blood-brain barrier (BBB-on-chip) featuring both isogenic human induced pluripotent stem cell (hiPSC)-derived cells and continuous barrier integrity monitoring with <2 min temporal resolution is reported. Its capabilities are showcased in the first microphysiological study of nitrosative stress and antioxidant prophylaxis. Relying on off-stoichiometry thiol-ene-epoxy (OSTE+) for fabrication greatly facilitates assembly and sensor integration compared to the prevalent polydimethylsiloxane devices. The integrated cell-substrate endothelial resistance monitoring allows for capturing the formation and breakdown of the BBB model, which consists of cocultured hiPSC-derived endothelial-like and astrocyte-like cells. Clear cellular disruption is observed when exposing the BBB-on-chip to the nitrosative stressor linsidomine, and the barrier permeability and barrier-protective effects of the antioxidant N-acetylcysteine amide are reported. Using metabolomic network analysis reveals further drug-induced changes consistent with prior literature regarding, e.g., cysteine and glutathione involvement. A model like this opens new possibilities for drug screening studies and personalized medicine, relying solely on isogenic human-derived cells and providing high-resolution temporal readouts that can help in pharmacodynamic studies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Acetilcisteína/análogos & derivados , Barreira Hematoencefálica , Células Cultivadas , Técnicas de Cocultura , Humanos
6.
Brain ; 143(11): 3181-3213, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020798

RESUMO

The complexity of the human brain poses a substantial challenge for the development of models of the CNS. Current animal models lack many essential human characteristics (in addition to raising operational challenges and ethical concerns), and conventional in vitro models, in turn, are limited in their capacity to provide information regarding many functional and systemic responses. Indeed, these challenges may underlie the notoriously low success rates of CNS drug development efforts. During the past 5 years, there has been a leap in the complexity and functionality of in vitro systems of the CNS, which have the potential to overcome many of the limitations of traditional model systems. The availability of human-derived induced pluripotent stem cell technology has further increased the translational potential of these systems. Yet, the adoption of state-of-the-art in vitro platforms within the CNS research community is limited. This may be attributable to the high costs or the immaturity of the systems. Nevertheless, the costs of fabrication have decreased, and there are tremendous ongoing efforts to improve the quality of cell differentiation. Herein, we aim to raise awareness of the capabilities and accessibility of advanced in vitro CNS technologies. We provide an overview of some of the main recent developments (since 2015) in in vitro CNS models. In particular, we focus on engineered in vitro models based on cell culture systems combined with microfluidic platforms (e.g. 'organ-on-a-chip' systems). We delve into the fundamental principles underlying these systems and review several applications of these platforms for the study of the CNS in health and disease. Our discussion further addresses the challenges that hinder the implementation of advanced in vitro platforms in personalized medicine or in large-scale industrial settings, and outlines the existing differentiation protocols and industrial cell sources. We conclude by providing practical guidelines for laboratories that are considering adopting organ-on-a-chip technologies.


Assuntos
Modelos Neurológicos , Fenômenos Fisiológicos do Sistema Nervoso , Pesquisa Translacional Biomédica , Animais , Engenharia , Humanos , Modelos Animais
7.
FASEB J ; 33(8): 9235-9249, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31145643

RESUMO

Cancer cells can switch between signaling pathways to regulate growth under different conditions. In the tumor microenvironment, this likely helps them evade therapies that target specific pathways. We must identify all possible states and utilize them in drug screening programs. One such state is characterized by expression of the transcription factor Hairy and Enhancer of Split 3 (HES3) and sensitivity to HES3 knockdown, and it can be modeled in vitro. Here, we cultured 3 primary human brain cancer cell lines under 3 different culture conditions that maintain low, medium, and high HES3 expression and characterized gene regulation and mechanical phenotype in these states. We assessed gene expression regulation following HES3 knockdown in the HES3-high conditions. We then employed a commonly used human brain tumor cell line to screen Food and Drug Administration (FDA)-approved compounds that specifically target the HES3-high state. We report that cells from multiple patients behave similarly when placed under distinct culture conditions. We identified 37 FDA-approved compounds that specifically kill cancer cells in the high-HES3-expression conditions. Our work reveals a novel signaling state in cancer, biomarkers, a strategy to identify treatments against it, and a set of putative drugs for potential repurposing.-Poser, S. W., Otto, O., Arps-Forker, C., Ge, Y., Herbig, M., Andree, C., Gruetzmann, K., Adasme, M. F., Stodolak, S., Nikolakopoulou, P., Park, D. M., Mcintyre, A., Lesche, M., Dahl, A., Lennig, P., Bornstein, S. R., Schroeck, E., Klink, B., Leker, R. R., Bickle, M., Chrousos, G. P., Schroeder, M., Cannistraci, C. V., Guck, J., Androutsellis-Theotokis, A. Controlling distinct signaling states in cultured cancer cells provides a new platform for drug discovery.


Assuntos
Glioblastoma/metabolismo , Proteínas Repressoras/metabolismo , Linhagem Celular Tumoral , Descoberta de Drogas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Glioblastoma/genética , Humanos , Interferência de RNA , Proteínas Repressoras/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
8.
Sci Rep ; 8(1): 11335, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054579

RESUMO

Diabetes mellitus is a group of disorders characterized by prolonged high levels of circulating blood glucose. Type 1 diabetes is caused by decreased insulin production in the pancreas whereas type 2 diabetes may develop due to obesity and lack of exercise; it begins with insulin resistance whereby cells fail to respond properly to insulin and it may also progress to decreased insulin levels. The brain is an important target for insulin, and there is great interest in understanding how diabetes affects the brain. In addition to the direct effects of insulin on the brain, diabetes may also impact the brain through modulation of the inflammatory system. Here we investigate how perturbation of circulating insulin levels affects the expression of Hes3, a transcription factor expressed in neural stem and progenitor cells that is involved in tissue regeneration. Our data show that streptozotocin-induced ß-cell damage, high fat diet, as well as metformin, a common type 2 diabetes medication, regulate Hes3 levels in the brain. This work suggests that Hes3 is a valuable biomarker helping to monitor the state of endogenous neural stem and progenitor cells in the context of diabetes mellitus.


Assuntos
Envelhecimento/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/metabolismo , Dieta Hiperlipídica , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Metformina/administração & dosagem , Proteínas do Tecido Nervoso/metabolismo , Estreptozocina/toxicidade , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Fenótipo , Proteínas Repressoras
9.
Brain Res ; 1642: 124-130, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27018293

RESUMO

Hes3 is a component of the STAT3-Ser/Hes3 Signaling Axis controlling the growth and survival of neural stem cells and other plastic cells. Pharmacological activation of this pathway promotes neuronal rescue and behavioral recovery in models of ischemic stroke and Parkinson's disease. Here we provide initial observations implicating Hes3 in the cuprizone model of demyelination and remyelination. We focus on the subpial motor cortex of mice because we detected high Hes3 expression. This area is of interest as it is impacted both in human demyelinating diseases and in the cuprizone model. We report that Hes3 expression is reduced at peak demyelination and is partially restored within 1 week after cuprizone withdrawal. This raises the possibility of Hes3 involvement in demyelination/remyelination that may warrant additional research. Supporting a possible role of Hes3 in the maintenance of oligodendrocyte markers, a Hes3 null mouse strain shows lower levels of myelin basic protein in undamaged adult mice, compared to wild-type controls. We also present a novel method for culturing the established oligodendrocyte progenitor cell line oli-neu in a manner that maintains Hes3 expression as well as its self-renewal and differentiation potential, offering an experimental tool to study Hes3. Based upon this approach, we identify a Janus kinase inhibitor and dbcAMP as powerful inducers of Hes3 gene expression. We provide a new biomarker and cell culture method that may be of interest in demyelination/remyelination research.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Doenças Desmielinizantes/genética , Regulação da Expressão Gênica , Córtex Motor/metabolismo , Bainha de Mielina/genética , Proteínas do Tecido Nervoso/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Técnicas de Cultura de Células , Meios de Cultivo Condicionados , Cuprizona , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro/metabolismo , Proteínas Repressoras
10.
Diabetes ; 65(2): 314-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26798118

RESUMO

Loss of insulin-producing pancreatic islet ß-cells is a hallmark of type 1 diabetes. Several experimental paradigms demonstrate that these cells can, in principle, be regenerated from multiple endogenous sources using signaling pathways that are also used during pancreas development. A thorough understanding of these pathways will provide improved opportunities for therapeutic intervention. It is now appreciated that signaling pathways should not be seen as "on" or "off" but that the degree of activity may result in wildly different cellular outcomes. In addition to the degree of operation of a signaling pathway, noncanonical branches also play important roles. Thus, a pathway, once considered as "off" or "low" may actually be highly operational but may be using noncanonical branches. Such branches are only now revealing themselves as new tools to assay them are being generated. A formidable source of noncanonical signal transduction concepts is neural stem cells because these cells appear to have acquired unusual signaling interpretations to allow them to maintain their unique dual properties (self-renewal and multipotency). We discuss how such findings from the neural field can provide a blueprint for the identification of new molecular mechanisms regulating pancreatic biology, with a focus on Notch, Hes/Hey, and hedgehog pathways.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Células-Tronco Neurais/fisiologia , Pâncreas/fisiologia , Regeneração/fisiologia , Animais , Diferenciação Celular/fisiologia , Proteínas Hedgehog/fisiologia , Humanos , Camundongos , Camundongos Nus , Organogênese/fisiologia , Pâncreas/embriologia , Transdução de Sinais/fisiologia
11.
J Biol Chem ; 289(51): 35503-16, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25371201

RESUMO

The transcription factor Hes3 is a component of a signaling pathway that supports the growth of neural stem cells with profound consequences in neurodegenerative disease models. Here we explored whether Hes3 also regulates pancreatic islet cells. We showed that Hes3 is expressed in human and rodent pancreatic islets. In mouse islets it co-localizes with alpha and beta cell markers. We employed the mouse insulinoma cell line MIN6 to perform in vitro characterization and functional studies in conditions known to modulate Hes3 based upon our previous work using neural stem cell cultures. In these conditions, cells showed elevated Hes3 expression and nuclear localization, grew efficiently, and showed higher evoked insulin release responses, compared with serum-containing conditions. They also exhibited higher expression of the transcription factor Pdx1 and insulin. Furthermore, they were responsive to pharmacological treatments with the GLP-1 analog Exendin-4, which increased nuclear Hes3 localization. We employed a transfection approach to address specific functions of Hes3. Hes3 RNA interference opposed cell growth and affected gene expression as revealed by DNA microarrays. Western blotting and PCR approaches specifically showed that Hes3 RNA interference opposes the expression of Pdx1 and insulin. Hes3 overexpression (using a Hes3-GFP fusion construct) confirmed a role of Hes3 in regulating Pdx1 expression. Hes3 RNA interference reduced evoked insulin release. Mice lacking Hes3 exhibited increased islet damage by streptozotocin. These data suggest roles of Hes3 in pancreatic islet function.


Assuntos
Proliferação de Células , Proteínas de Ligação a DNA/genética , Expressão Gênica , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Fatores de Transcrição/genética , Adulto , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Western Blotting , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Exenatida , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Insulina/genética , Secreção de Insulina , Insulinoma/genética , Insulinoma/metabolismo , Insulinoma/patologia , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Obesos , Microscopia Confocal , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Peptídeos/farmacologia , Interferência de RNA , Proteínas Repressoras , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Peçonhas/farmacologia
12.
Hepatology ; 60(4): 1196-210, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24845056

RESUMO

UNLABELLED: The low-grade inflammatory state present in obesity contributes to obesity-related metabolic dysregulation, including nonalcoholic steatohepatitis (NASH) and insulin resistance. Intercellular interactions between immune cells or between immune cells and hepatic parenchymal cells contribute to the exacerbation of liver inflammation and steatosis in obesity. The costimulatory molecules, B7.1 and B7.2, are important regulators of cell-cell interactions in several immune processes; however, the role of B7 costimulation in obesity-related liver inflammation is unknown. Here, diet-induced obesity (DIO) studies in mice with genetic inactivation of both B7.1 and B7.2 (double knockout; DKO) revealed aggravated obesity-related metabolic dysregulation, reduced insulin signalling in the liver and adipose tissue (AT), glucose intolerance, and enhanced progression to steatohepatitis resulting from B7.1/B7.2 double deficiency. The metabolic phenotype of B7.1/B7.2 double deficiency upon DIO was accompanied by increased hepatic and AT inflammation, associated with largely reduced numbers of regulatory T cells (Tregs) in these organs. In order to assess the role of B7 costimulation in DIO in a non-Treg-lacking environment, we performed antibody (Ab)-mediated inhibition of B7 molecules in wild-type mice in DIO. Antibody-blockade of both B7.1 and B7.2 improved the metabolic phenotype of DIO mice, which was linked to amelioration of hepatic steatosis and reduced inflammation in liver and AT. CONCLUSION: Our study demonstrates a dual role of B7 costimulation in the course of obesity-related sequelae, particularly NASH. The genetic inactivation of B7.1/B7.2 deteriorates obesity-related liver steatosis and metabolic dysregulation, likely a result of the intrinsic absence of Tregs in these mice, rendering DKO mice a novel murine model of NASH. In contrast, inhibition of B7 costimulation under conditions where Tregs are present may provide a novel therapeutic approach for obesity-related metabolic dysregulation and, especially, NASH.


Assuntos
Antígenos B7/fisiologia , Síndrome Metabólica/fisiopatologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/fisiopatologia , Animais , Antígenos B7/deficiência , Antígenos B7/genética , Comunicação Celular/fisiologia , Modelos Animais de Doenças , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Linfócitos T Reguladores/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...